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Abstract. This paper provides an introduction to the mathematical notion of quantum curves.
We start with a concrete example arising from a graph enumeration problem. We then develop a
theory of quantum curves associated with Hitchin spectral curves. A conjecture of Gaiotto, which
predicts a new construction of opers from a Hitchin spectral curve, is explained. We give a step-by-
step detailed description of the proof of the conjecture for the case of rank 2 Higgs bundles. Finally,
we identify the two concepts of quantum curve arising from the topological recursion formalism
with the limit oper of Gaiotto’s conjecture.
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1. Introduction

Mathematical research is a journey. We start from one place, often a remote place nobody cares.
Guided by mysteries one after another, we arrive at a place we have never imagined. We then
suddenly realize that many people have come to the same place, starting from totally different
origins.

These are the lectures that the author has delivered in the last few years in many places of the
world. They are meant to be an introduction to the notion of quantum curves. Yet the honest
feeling that the author has now is that these are more a record of how her understanding of quantum
curves has evolved. The mathematics of quantum curves itself has been changing over the years.
We have started from one place, based on what is known as topological recursion. When we have
arrived at the current position, we find ourselves dealing with opers.

The notion of quantum curves was conceived in string theory by Aganagic, Dijkgraaf, Gukov,
Hollands, Klemm, Marino, Sulkowski, Vafa, and others [1, 5, 6, 22]. We are far from establishing a
complete theory at this moment. Yet we hope these lectures give a snapshot of what is understood
in the mathematics community now, at least one of the many sides of the story of quantum curves.

This paper is organized as follows. In Section 2, we start from a simple question in enumerative
geometry, and obtain the Dijkgraaf-Verlinde-Verlinde formula [7] for intersection numbers of ψ-
classes on moduli space of stable curves Mg,n. More precisely, in Section 2.3, we use the edge
contraction operations of ribbon graphs to generalize a count of graphs, and establish a recursion
of Catalan numbers of arbitrary genera. Then in Section 2.5, we present how the Laplace transform
of the recursion of Catalan numbers surprisingly gives the DVV formula for intersection numbers
on Mg,n. By the WKB analysis the recursion relation becomes equivalent to the quantization
of the spectral curve of the Catalan numbers. In Section 2.8, we present how the same set of
edge contraction operations on ribbon graphs give the cut-and-join equations for orbifold Hurwitz
numbers.

We start with presenting an introduction to the geometry of the Hitchin moduli spaces of holo-
morphic Higgs bundles and connections in Section 4. We then generalize the quantization theorem
of Catalan recursion 2.5, replacing the concept of spectral curves of Section 2.4 by the framework of
Hitchin spectral curves. More precisely, following [10, 11, 13], we present the quantization results
of spectral curves for holomorphic and meromorphic Higgs bundles of rank 2. Here, the algebro-
geometric technique presented in Section 4.1 was indispensable in quantizing singular Hitchin
spectral curves [11].

In Section 5, using the work of Gunning [23], we propose to identify the two concepts: quantum
curves and opers. The new idea of quantization in these notes is based on a recent solution [9] of
a conjecture due to the physicist Gaiotto [18], presented in Sections 6 and 7.

1.1. Acknowledgments. The author would like to express her gratitude to the organizers of
String-Math 2016 held in Collège de France, Paris, and to the Institute Henri Poincaré, for their
hospitality. These lecture notes grew out from the author’s paper [9] in collaboration with L.
Fredrickson, G. Kydonakis, R. Mazzeo, M. Mulase, and A. Neiztke, that solves a conjecture of
Davide Gaiotto [18]. This work was initiated at the AIM workshop, “New perspectives on spectral
data for Higgs bundles.” The author also thanks the organizers of the workshop, in particular
Philip Boalch and Laura Schaposnik, for motivating interest in this problem by posing the question
which led to this analysis.

The author is deeply indebted to Motohico Mulase for his generosity in mathematical discussions,
enthusiasm, passion and encouragement that stimulated our collaboration throughout the years.
This work could not have been produced without his support, for which the author would like to
express all her gratitude.
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ematics, Bonn. These lectures are based on a collaboration and discussions of the author with
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2. Enumeration of ribbon graphs

2.1. A combinatorial model for the moduli space of curves Mg,n. Ribbon graphs are com-
binatorial objects first used by G. ’t Hooft [41] in quantum gauge theory, and later by Kontsevich
[27] in random matrix theory as the first approach to Gromov-Witten theory. They appeared in-
dependently in the work of Grothendieck [21] and are also known as dessins d’enfants. A ribbon
graph as a graph has a cyclic ordering of the set of incident half-edges at each vertex and labeled
faces. A ribbon graph embeds into an oriented compact topological surface of type (g, n), where g
represents the genus of the surface and n the number of marked points corresponding to the faces
of the ribbon graph.

Fig. 1

Decorating ribbon graphs by a positive real number on each edge fixes a topological surface of
type (g, n) together with a complex structure on it. Introduce the total space of graphs as an
orbifold parametrizing decorated ribbon graphs of a given topological type (g, n):

Rg,n =
∐

Γ boundary labeled
ribbon graph
of type (g,n)

and e(Γ) edges

Re(Γ)
+

Aut(Γ)

The space Rg,n is a smooth orbifold (see [30, Section 3] and [39]). The combinatorial model of
moduli space was constructed by Thurston [39], Harer [24, 25], Mumford [33], and Strebel [40] (cf.
[30]). There exists an orbifold isomorphism between the total space of graphs of type (g, n) and the
product of Rn+ and the moduli space Mg,n of smooth algebraic curves of genus g with n marked
points:

(2.1.1) Rg,n ∼=Mg,n × Rn+.

The isomorphism (2.1.1) gives a cell-decompositions of the moduli space Mg,n for each choice
of p ∈ Rn+, and generalized Catalan numbers are related to a count of lattice points in each cell-
decomposition for p ∈ Zn+. The isomorphism (2.1.1) enables us to use the combinatorial model
for the study of topology of Mg,n via ribbon graphs and their geometry. Starting from a count
of graphs, or the number of orbi-cells in Rg,n, the corresponding enumerative problem on Mg,n

surprisingly becomes the intersection numbers of the ψ classes on Mg,n.
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2.2. The Combinatorics of Catalan recursion. In combinatorics, the Catalan numbers form a
sequence of natural numbers that occur in various counting problems for recursively defined objects.
They also appear in nature, and have more than twenty alternative definitions. To extend one of
these interpretations we define the generalized Catalan number to count a number of graphs on a
Riemann surface of genus g with n marked points. We define a cell graph to be a ribbon graph with
labeled vertices. We introduce the generalized Catalan numbers, Cg,n(µ1, . . . , µn), as the number
of cell graphs of type (g, n) with an outgoing arrow and degree µi at each vertex i. In Figure (2(1)),
we give an example of a vertex of degree 7.

(1) (2)

Fig. 2

Example 2.1. For (g, n) = (0, 1), the Catalan numbers Cm count graphs on a Riemann sphere
with one vertex (so all edges are loops). We recall the classical definition of Catalan numbers
counting the number of expressions containing m pairs of parentheses which are correctly matched.
It is easy to see that C0,1(2m) = Cm. In Figure (2(2)) we provide an example explaining why each
cell graph corresponds to a pair of parenthesis for m = 3.

Since for the classical Catalan numbers there is the recursion Cm =
∑

a+b=m−1Ca ·Cb, we expect
to find a similar recursion for the generalized Catalan number Cg,n(µ1, . . . , µn).

2.3. Edge contraction operation and Catalan recursion.

Theorem 2.1 (Theorem 3.2, [16], [42]). For 2g−2+n ≥ 0, n ≥ 1, the generalized Catalan numbers
satisfy the following recursion

Cg,n(µ1, . . . , µn) =
n∑
j=2

µj · Cg,n−1(µ1 + µj − 2, µ2, . . . , µ̂j , . . . , µn)+

+
∑

α+β=µ1−2

[
Cg−1,n+1(α, β, µ2, . . . , µn) +

∑
g1+g2=g

ItJ={2,...,n}

Cg1,|I|+1(α, µI) · Cg2,|J |+1(β, µJ)

]
.

Proof. Starting from a cell graph with an arrowed edge at vertex 1 we will contract this edge to a
point, and we call this an Edge Contraction Operation. We distinguish two cases.

Case 1. The arrowed edge connects vertex 1 of degree µ1 with the vertex j > 1 of degree µj .
We contract the edge and we join the two vertices 1 and j together as shown in figure below. The
resulting graph has one less vertex, but the genus is the same, the degree of the newly created
vertex is µ1 + µj − 2; we mark the edge that was immediately counterclockwise of the contracted
edge, as indicated in Figure 3(1).

Case 2. The arrowed edge is a loop attached to vertex 1, then we remove this loop from the cell
graph, and separate the vertex into two vertices. The loop classifies all other incident edges into

4



1 j

(1) (2)

Fig. 3

two groups with α edges in one group, and β the rest. Then α + β = µ1 − 2, and we create two
vertices of degrees α and β as in the Figure 3(2).

�

2.4. Spectral curve for the Catalan recursion.

Question 2.2. What is the mirror dual of Catalan numbers?

We will construct the spectral curve of Catalan numbers from the (g, n) = (0, 1) unstable geome-
try. We observe first that the recursion in Theorem 2.1 for the unstable range gives the well-known
Catalan recursion of Example 2.1, i.e.,

(2.4.1) Cm =
∑

a+b=m−1

Ca · Cb.

We define the generating function of Catalan numbers

z(x) :=

∞∑
m=0

Cm · x−(2m+1).

The Catalan recursion (2.4.1) is equivalent to the series x− z(x) being the inverse of the z(x). We
thus discover the spectral curve of the Catalan recursion:

(2.4.2) z2 − z · x+ 1 = 0.

This is the mirror dual of Catalan numbers.

2.5. Genesis of Enumerative Geometry: Gromov-Witten invariants of a point. By the
orbifold isomorphism (2.1.1) we will deduce that the count of graphs is equivalent to an enumerative
question on Mg,n. In the stable range we will consider first the generating function of generalized
Catalan numbers, or free energies:

Fg,n(x1, . . . , xn) :=
∑

µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

n∏
i=1

x−µii .

Surprisingly, the generating function Fg,n knows χ(Mg,n) and intersection numbers of Mg,n!
We now perform a change of coordinates. For each of the variables xi we introduce a variable ti

by

(2.5.1) xi := 2 · t
2
i + 1

t2i − 1
, zi :=

ti + 1

ti − 1
.

With this change of variables Fg,n(t1, . . . , tn) becomes a Laurent polynomial of degree
3 · (2n− 2 + n) with beautiful geometric properties

(1) Fg,n(1, . . . , 1) = (−1)nχ(Mg,n)

5



(2) Fg,n(t1, . . . , tn) = Fg,n( 1
t1
, . . . , 1

tn
)

In Section 4.1 we will answer the following question:

Question 2.3. Why do we have to perform the change of variables (2.5.1) in order to see the
topological information encoded by Fg,n?

The leading terms of Fg,n(t1, . . . , tn) form a homogeneous polynomial of degree
3(2n− 2 + n)

Fg,n(t1, . . . , tn)top =
(−1)n

22g−2+n
·
∑

d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉 ·
n∏
i=1

(|2di − 1|)!! ·
(
ti
2

)2di+1

,

where the symbol

〈τd1 · · · τdn〉 :=

∫
Mg,n

c1(L1)d1 · · · c1(Ln)dn

denotes cotangent class intersection numbers on Mg,n. Furthermore, the Catalan recursion ob-
tained via Edge Contraction Operations in Theorem 2.1 translates into an infinite system of differ-
ential equations known as the Dijkgraaf-Verlinde-Verlinde equation [7] of the intersection numbers.
This implies the celebrated theorem of Kontsevich, Mirzakhani, Okounkov-Pandharipande and
others, on the Witten conjecture.

Theorem 2.4 (Theorem 6.1, [16]). The Witten-Kontsevich intersection numbers satisfy the DVV
equation.

Surprisingly, the recursion relations of Theorem 2.4 can be encoded compactly into a single ordinary
differential equation. Namely, there exist a differential operator, what we call a quantum curve,
that annihilates the generating function of the free energies. More precisely, the first quantization
result was proved by Mulase and Su lkowski following a conjecture of Gukov and Su lkowski:

Theorem 2.5 ([31]). Let ~ be a formal parameter. Then we have(
~2 · d

2

dx2
+ ~ · x · d

dx
+ 1

)
exp

 ∑
2g−2+n≥−1

1

n!
· ~2g−2+n · Fg,n(t, . . . , t)

 = 0.

Here, the scalar ~ is a deformation parameter. In Section 5, we will see that mathematically ~
is an extension class of line bundles on an algebraic curve.

Question 2.6. (1) Why does this complicated function satisfy such a simple differential equa-
tion?

(2) Where does this differential equation come from?

Let us replace z by −~ d
dx in the the spectral curve equation of the Catalan recursion (2.4.2)

z2 − x · z + 1 = 0.

We obtain precisely the differential operator known as the the quantum curve of the Catalan spectral
curve in Theorem 2.5:

~2 · d
2

dx2
+ ~ · x · d

dx
+ 1.

The following questions are natural.

Question 2.7. (1) From the shape of the above equations, it looks like a canonical quantization
of the spectral curve. Is it really the case?

(2) If so, then what is the mathematical framework that explains this surprising phenomenon?
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2.6. Cut-and-Join equation for orbifold Hurwitz numbers. Another example of the use
of edge contraction operations on cell graphs gives a surprising enumerative problem of Hurwitz
numbers. Let Hr

g,n(µ1, . . . , µn) denote the number of topological types of regular maps from a

smooth curve of genus g to P1 with profile (

m︷ ︸︸ ︷
r, . . . , r) over 0 ∈ P1, labeled profile (µ1, . . . , µn) over

∞ ∈ P1, and simple ramification at any other ramification points, weighted with automorphisms
of such maps. These numbers are referred to as orbifold Hurwitz numbers. For r = 1, they count
simple Hurwitz numbers. In [12] we generalized the notion of branching graph of Okounkov and
Pandharipande [36] (r = 1) to r-Hurwitz graphs (arbitrary r), via combinatorics. An r-Hurwitz
graphs is a cell graph with a collection of dots associated to each vertex ([Definition 6.1, [12]]).
Counting the number of r-Hurwitz graphs via edge contraction operations we recover the Cut-and-
Join equation for orbifold Hurwitz numbers. Denoting Hrg,n(µ1 . . . , µn) = µ1 . . . µnH

r
g,n(µ1 . . . , µn),

we obtain

Theorem 2.8 (Theorem 6.6, [12], Cut-and-Join equation for orbifold Hurwitz numbers). The
number of arrowed Hurwitz graphs satisfy the following edge-contraction formula.

(2.6.1)

(
2g − 2 +

d

r
+ n

)
Hrg,n(µ1 . . . , µn)

=
∑
i<j

µiµjHrg,n−1(µ1, . . . , µi−1, µi + µj , µi+1, . . . , µ̂j , . . . , µn)

+
1

2

n∑
i=1

µi
∑

α+β=µi
α,β≥1

Hrg−1,n+1(α, β, µ1, . . . , µ̂i, . . . , µn)

+
∑

g1+g2=g

ItJ={1,...,̂i,...,n}

Hrg1,|I|+1(α, µI)Hrg2,|J |+1(β, µJ)

 .
Here, ̂ indicates the omission of the index, and µI = (µi)i∈I for any subset I ⊂ {1, 2, . . . , n}.

The restriction to the (0, 1) unstable cases of Theorem 2.8 recovers the spectral curve of the
orbifold Hurwitz numbers, that is known as the r-Lambert curve. The computations are similar to
the ones explained in Section 2.2, leading to the mirror curve of Hurwitz numbers

xr = ye−ry.

Edge contraction operations are graphical manifestation of a Frobenius algebra structure and
it was shown in [Corollary 4.8, [12])] that they give alternative axiomatic definition of 2 dimen-
sional topological quantum field theory (2d TQFT). We further emphasize the importance of these
operations by relating the 2d TQFT formula of [Corollary 4.8, [12])] with the count of points of a
character variety for a finite group and Hodge-Deligne polynomial of a character variety in [14, 15].

While Catalan numbers have an algebraic spectral curve, Hurwitz numbers have an analytic
spectral curve. Later on we will focus on rank 2 Higgs bundles, whose spectral curves are algebraic.
In Section 4.1, we will encounter with the familiar Catalan example.

3. A walk into the woods of Higgs bundles and connections

Let C be a smooth projective curve, and KC the canonical bundle of C whose sections are
holomorphic 1-forms.

7



3.1. Moduli spaces of vector bundles. We recall the somewhat anachronistic definition of a
holomorphic vector bundle E over C. For an open cover of affine sets C = ∪αUα, we denote by
fαβ : Uα ∩ Uβ → GLr(C) the holomorphic transition functions that satisfy the 1-cocyle condition
fαβ = fαγ · fγβ on Uα∩Uβ ∩Uγ . Two points (xα, ζα(xα)) ∈ Uα×Cr and (xβ, ζβ(xβ)) ∈ Uβ×Cr are
glued if ζα(x) = fαβ(x) ·ζβ(x) for x ∈ Uα∩Uβ. Two transition functions fαβ and f ′αβ subordinating
the same open covering Uα define the isomorphic vector bundle if and only if there exists a family
uα : Uα → GLr(C) of holomorphic maps, called gauge transformations, satisfying

f ′αβ = uα · fαβ · uβ.

A global holomorphic section of the vector bundle E, s ∈ H0(C,E), is given by a collection of
holomorphic maps sα : Uα → Cr compatible with the transition functions: sα(x) = fαβ(x) · sβ(x)
for x ∈ Uα ∩ Uβ.

The degree of a vector bundle is the first Chern class, deg(E) := c1(Λr(E)). Over a compact
connected Riemann surface C, topologically vector bundles are completely classified by the discrete
invariants, rank and degree. However, introducing a holomorphic structure, classification results of
vector bundles on a smooth, irreducible, complex projective curve become more elaborate. Define
the slope of E to be the rational number µ(E) = deg(E)/rank(E) - this is a topological quantity
with important implications on holomorphic structures. A holomorphic vector bundle E is called
stable (resp. semi-stable) if for any non-trivial holomorphic subbundle F , µ(F ) < µ(E) (resp.
µ(F ) ≤ µ(E)) holds. There are complete classification results for holomorphic vector bundles for
rational and elliptic curves, due to Grothendieck for the case of the Riemann sphere [20], and Atiyah
for the case of elliptic curves [2]. However, for genus higher than one there are no such classification
results available, therefore such question is replaced by the construction of moduli space of stable
holomorphic vector bundles of rank r and degree e, denoted by UC(r, e), whose geometry has been
intensely studied. Over a smooth projective curve C of genus g > 1, the moduli space UC(r, e) is
a quasi-projective complex variety of dimension r2(g − 1) + 1 (Narasimhan-Seshadri [35], Seshadri
[37], see also Atiyah-Bott [3] and Mumford-Fogarty-Kirwan [34] for more information on the moduli
theory of stable vector bundles over Riemann surfaces).

By reducing the Yang-Mills self-duality equations from dimension 4 to dimension 2 on a compact
Riemann surface, Hitchin introduced in [26] the moduli space of solutions to Hitchin’s equations,
having a CP1 of complex structures, parametrized by ζ ∈ CP1. If ζ is zero, then this space is
identified with the Dolbeault moduli space MDol of holomorphic stable Higgs bundles consisting of
(E, φ), where E is a vector bundle of rank r and fixed degree e, and φ ∈ H0(C,End(E)⊗KC) is a
Higgs field. If r and e are coprime, thenMDol becomes quasi-projective variety. If ζ is non-zero and
e = 0, then the the moduli space of solutions to Hitchin’s equations can be identified, as a complex
analytic variety, with the de Rham moduli space MdeR consisting of irreducible flat connections ∇
in holomorphic vector bundles V of rank r and degree 0.

The cotangent bundle T ∗UC(r, e) is an open dense subset of MDol whose complement has codi-
mension 2 or higher. Therefore, dimMDol = dim T ∗UC(r, e) = 2 dim UC(r, e) = 2 · r2 · (g− 1) + 2,
and it acquires a holomorphic symplectic structure.

These two moduli spaces, MDol and MdeR, will play a key role in our discussion.

Definition 3.1. Let C be a smooth projective curve of genus at least two, E and V two holomorphic
rank r vector bundles on C and d the exterior differential on C.

(1) A holomorphic Higgs bundle is a pair (E, φ), where E is a holomorphic vector bundle and
φ : E → E ⊗KC is a OC-module homomorphism, i.e., φ(f · s) = f · φ(s), ∀f ∈ OC , s ∈ E.

(2) A stable (resp. semi-stable) Higgs bundle is a Higgs pair (E, φ) such that for any φ-invariant
sub-bundle F of E, φ : F → F ⊗KC , µ(F ) < µ(E) (resp. µ(F ) ≤ µ(E)) holds.

8



(3) A holomorphic connection is a C-linear homomorphism ∇ : V → V ⊗KC of a holomorphic
vector bundle V such that ∇(f · s) = df ⊗ s+ f · ∇(s), ∀f ∈ OC and holomorphic sections
s ∈ V . A differentiable connection is defined in the same way, replacing f by a differentiable
function on C and s ∈ V by a differentiable section of V .

(4) An irreducible connection is a connection∇ in V for which no sub-bundle of V is∇-invariant.
(5) A hermitian metric on the complex vector bundle E is a positive definite Hermitian form

h on each fiber Ep, p ∈ C. It is a smooth section of Γ(E ⊗ Ē∗) such that for all η, ζ ∈ Ep,
〈η, ζ〉 := hp(η, ζ̄) = hp(ζ, η̄) and hp(ζ, ζ̄) > 0.

(6) Let h be a hermitian metric in a vector bundle V , and 〈·, ·〉 the hermitian inner product.
An h-unitary connection on a vector bundle V is a differentiable connection ∇ such that
for any differentiable sections s and t of E, 〈s, t〉 = 〈∇(s),∇(t)〉.

Remark 3.2. If ∇1 and ∇2 are holomorphic connections in a holomorphic vector bundle V , then
the difference ∇1−∇2 is an OC-module homomorphism. Therefore, (V,∇1−∇2) is a holomorphic
Higgs pair. This proves that the Dolbeault and the de Rham moduli spaces,MDol andMdeR, have
the same dimensions.

3.2. Spectral curve of the Hitchin fibration. The Higgs field φ : E → E ⊗ KC induces
a map ∧iφ : ∧iE → ∧iE ⊗ Ki

C for every i ≥ 0, locally given by the alternative sum of the
i-th minors of φ, with trace tr(∧iφ) ∈ H0(C,Ki

C). If i = r then ∧rφ = tr(∧rφ) = detφ ∈
H0(C,End(∧rE)⊗Kr

C). This defines a holomorphic map, called the Hitchin map H, which induces
an algebraically completely integrable Hamiltonian system

(3.2.1)

MDolyH
B :=

⊕r
i=1H

0(C,Ki
C).

For a Higgs pair (E, φ) let s denote the spectral data

s :=
(
(−1)itr(∧iφ)

)
i=1,...,r

∈ B ∼= Cr
2(g−1)+1.

The Hitchin map H sends a Higgs bundle to its spectral data

(E, φ)
H→ s.

Obviously, the fiber of H over zero contains all Higgs bundles of the form (E, φ = 0), where E
is a stable vector bundle, so UC(r, e) ⊂ H−1(0).

The total space of the canonical bundle KC is the cotangent bundle T ∗C. There is a tautological
1-form η ∈ H0(T ∗C, π∗KC) on the symplectic variety T ∗C defined by

T ∗C ←−−−− π∗KC

π

y
C ←−−−− KC .

Locally η is defined by ydx for x ∈ C and y the fiber coordinate, while −dη is the natural holomor-
phic symplectic form on T ∗C.

The characteristic polynomial of a Higgs bundle (E, φ) defines the spectral curve denoted by Σs

in T ∗C as the divisor of the zero of the following global section

(3.2.2) det(η · Ir − π∗φ) :=

r∑
i=0

(−1)itr(∧iφ)⊗ η⊗(r−i) ∈ H0(T ∗C, π∗Kr
C).

9



The coefficients of the defining equation of Σs are given by the spectral data s of the Higgs bundle
(E, φ). Observe that η induces a 1-form on the spectral curve Σs by pulling back via the inclusion
map i of Σs in T ∗C.

Remark 3.3. General Properties of Σs.

(1) Σs is non-singular for generic s.
(2) Σs is a curve inside the cotangent bundle T ∗C of genus

g(Σ) = r2(g − 1) + 1.

(3) The fiber over a generic point is the Jacobian:

H−1(s) = Jac(Σs).

(4) There is a degree r cover
Σsyr:1
C.

From now on we will consider the Hitchin theory for the Lie group G = SLr(C). In other words,
MDol denotes the moduli space of holomorphic Higgs bundles (E, φ) with tr(φ) = 0 such that E
has the fixed trivial determinant. The fiber of the Hitchin map H−1(s) at a generic point

s ∈ B :=
r⊕
i=2

H0(C,Ki
C)

becomes the Prym variety

H−1(s) = Prym(Σs → C) := Ker(Nm)

of the spectral covering π : Σs −→ C with the spectral data s, i.e., the kernel of the norm map

Nm : Jac(Σs) 3
∑
p∈Σs

mp · p 7−→
∑
p∈Σs

mp · π(p) ∈ Jac(C).

The moduli space MDol is a generically Abelian fibration over B.

3.2.1. Rank 2 simplification. We will focus next on rank 2 and degree 0.

(1) The SL2(C)-Higgs bundle (E, φ), has tr(φ) = 0 and trivial determinant
det(E) = ∧2E = OC .

(2) The Hitchin map MDolyH
B := H0(C,K2

C) 3 s

sends (E, φ)
H→ det(φ) = s.

Example 3.1 (rank two SL2(C) stable Higgs bundles). Choose a spin structure on a curve C

of genus g ≥ 2, i.e., a choice of the line bundle K
1
2
C , (5.1.2). For any quadratic differential q ∈

H0(C,K2
C) on C,

(
K

1
2
C ⊕K

− 1
2

C ,

(
0 q
1 0

))
is a stable Higgs bundle on C. This example will play a

key role in our later analysis (see Definition (5.2)).
Another example is on the trivial vector bundle. For any non-zero holomorphic 1-form p ∈

H0(C,KC),

(
OC ⊕OC ,

(
0 p
p 0

))
is again a stable Higgs bundle.
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Remark 3.4. Let {fαβ} be a transition function for E.

(1) Locally on C, ∇|U = d+A|U , where A : E → E ⊗KC .
(2) Any Higgs field is compatible with the transition functions of E. Indeed, if φα = φ|Uα , then

(3.2.3) φα = fαβ · φβ · f−1
αβ .

(3) If s ∈ E is a holomorphic section, then sα(x) = fαβ(x) ·sβ(x) for x ∈ Uα∩Uβ. We note that
derivatives of sections do not make sense as sections: dsα(x) 6= fαβ(x)·dsβ(x). Nevertheless,
if Aα = A|Uα , then (d + Aα) · sα = fαβ · [(d + Aβ) · sβ] on Uα ∩ Uβ. Therefore, for any
connection ∇ = {d+Aα}α on E, the Gauge transformation holds

(3.2.4) Aα = fαβ ·Aβ · f−1
αβ − f

−1
αβ · dfαβ.

Since fαβ · f−1
αβ = 1, by applying the exterior differential d, it is obvious that (3.2.4) is

equivalent to Aα = fαβ ·Aβ · f−1
αβ + fαβ · df−1

αβ , or simply dfαβ = fαβ ·Aβ −Aα · fαβ.

Locally, φ and A are both r by r matrices of 1-forms, but satisfying different rules with respect
to the transition function of the vector bundle. We emphasize here that given a Higgs bundle (E, φ)
in MDol, it is not obvious how to obtain a connection (V,∇) in MdeR. The goal of these lecture
notes is to reveal the holomorphic path that a Higgs bundle on a Hitchin section travels to become
a connection, called an oper, is the goal of these lecture notes.

4. From Higgs bundles to quantum curves

4.1. Higgs bundles for Catalan numbers. We wish to consider the curve z2 − z · x+ 1 = 0 of
(2.4.1) as a local expression of a singular spectral curve (divisor) inside the Hirzebruch surface F2

associated with a meromorphic Higgs bundle.

Example 4.1. The Spectral curve of Catalan numbers as the spectral curve of a Higgs bundle.

(1) The curve is C = P1, and the vector bundle E = K
1
2
C ⊕K

− 1
2

C = OP1(−1)⊕OP1(1).
(2) The meromorphic Higgs field φ : E → E ⊗KC(∗) is given by

φ =

(
0 −(dx)2

1 x · dx

)
on the affine line A1 ⊂ P1.

(3) The spectral curve of a Higgs bundle, denoted by

Σ ⊂ T ∗P1 = F2 := P
(
OP1(−2)⊕OP1

)
,

is given by the characteristic polynomial of the Higgs field φ

det(η · I2 − φ) = det(z · dx · I2 − φ) = (z2 − x · z + 1) · (dx)2 = 0

in T ∗A1.

• We further consider a resolution of singularity of curve Σ by blowing up F2.
• Σ is smooth in T ∗A1 near (0, 0) (Figure 4(1)), and has a double point in F2 at (∞,∞)

(Figure 4(2)).

• Blow up the surface F2 and denote by Σ̃ the strict transform of Σ. Introduce a new local

parameter w1 such that w = w1 · u. The strict transform Σ̃ becomes a conic

Σ̃ : u2 + (w1 −
1

2
)2 =

1

4
.

11



(1): Σ around (0, 0): z2 − x · z + 1 = 0 (2): Σ at (∞,∞): u4 − u · w + w2 = 0

Fig. 4

• Σ̃ is a rational curve, and t of (2.5.1) is the normalization coordinate that parametrizes
the affine part of the spectral curve by

u =
t2 − 1

2 · (t2 + 1)

w1 =
1

2
− t

t2 + 1
.

• Denote by F the class of a fiber of F2 → P1, by B the negative section, i.e., the zero section
of T ∗P1, and by E the exceptional divisor created on F2 after the blow-up at the double

point of Σ at (∞,∞). Then the proper transform Σ̃ on the blown-up of F2 is written as
the divisor

Σ̃ = 4F + 2B − 2E.

4.2. Higgs bundles and quantum curves. We are now ready to generalize Theorem 2.5 and
results in Section 4.1 to any meromorphic Higgs bundle (E, φ) of rank two.

In [10] we have established a new connection between the Hitchin theory/Higgs bundles and
topological recursion/quantum curve theory. These are two apparently different broad theories that
share the notion of spectral curves. To establish the notations, let C be a smooth projective
curve of arbitrary genus, and KC the canonical bundle. We denote by E a holomorphic rank two
vector bundle on C, and by φ : E → E ⊗KC(∗) a Higgs field.

• In [10] we considered a holomorphic Higgs pair (E, φ). Hitchin constructed the spectral
curve Σ of φ by the characteristic polynomial of φ (3.2.2), Σ ↪→ T ∗C.
• In [11] we considered a meromorphic Higgs pair. We construct the spectral curve Σ as the

zero divisor of the characteristic polynomial of φ inside the compactified cotangent bundle
of C that is a ruled surface over C:

Σ := (det(η · Ir − π∗φ))0 ↪→ T ∗C,

where η ∈ H0(T ∗C, π∗KC) is the tautological 1-form on T ∗C extended as a meromorphic
1-form on the compactification T ∗C. We consider a resolution of singularities of Σ by

12



blowing up the ruled surface T ∗C over C, along the base locus of Σ.

Σ̃
i−−−−→ Bl(T ∗C)y yblow−up

Σ −−−−→
i

T ∗C

In [10], [11] (see also [13]), we extended the framework of topological recursion [17] to singular
Hitchin spectral curves, utilizing the birational geometry of ruled surfaces. As a consequence, this
extension has led to the discovery of the relation between Hitchin spectral curves and Gromov-
Witten invariants in few examples (as the one in Section 2.1 and Section 4.1). More precisely, the
novelty of this approach is the discovery of the PDE differential recursions of free energies
Fg,n in [Definition 6.6, [11]] (as well as [Equation 6.5, [10]]) that implies the WKB analysis of the
quantization Theorem 4.1. Moreover, the PDE differential recursions of free energies Fg,n
also implies the well-known integral topological recursion of Eynard-Orantin for a spectral curve
of genus 0. The PDE recursion relates the Hitchin spectral curve with enumerative geometry.

Theorem 4.1 (Quantization Theorem [10], [11]). For a rank 2 Higgs bundle and x ∈ C, we
construct locally a second order differential operator P (x, ~·d/dx) whose semi-classical limit recovers
the spectral curve Σ. We also construct a solution ψ(x, ~) of equation P (x, ~ · d/dx)ψ(x, ~) = 0 in
terms of principal specialization of the PDE recursion.

The enumerative geometry example of the Catalan numbers emphasized by equation (2.4.2) is
locally encaptured in the framework of Hitchin systems by Example in the Section 4.1. Following
this approach, assume that the spectral curve of the Higgs bundle has the local expression

y2 − trφ(x) · y + detφ(x) = 0.

The quantum curve associated to this spectral curve is a Rees D-module, locally given by the
second order differential operator obtained by replacing the y variable by ~ d

dx (as in Theorem 2.5)

P (x, ~ · d/dx) =

(
~ · d

dx

)2

− trφ(x) · ~ · d
dx

+ detφ(x).

The generating function of free energies is

ψ(x, ~) = exp

 ∑
2g−2+n≥−1

1

n!
· ~2g−2+n · Fg,n(x, . . . , x)

 = 0,

where Fg,n(x1, . . . , xn) are the free energies defined by the PDE recursion of [Definition 6.6, [11]].
If the spectral curve Σ is a singular curve, then the differential operator P (x, ~ ·d/dx) has irregular
singularities and ψ has essential singularities. The asymptotic expansion of ψ (see e.g. [Definition
1.1, [13]]) as in the Catalan example (2.4.2) around its singularity has coefficients that encode
information of Gromov-Witten invariants (Section 2.5, see also the Airy example of [Section 1,
[13]]).
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5. The metamorphosis of quantum curves into opers

From now on we will focus on holomorphic Higgs bundles (E, φ) on a Riemann surface C of
genus at least two.

5.1. Projective coordinate system. We recall that a universal covering is a covering space
that is simply connected. By Riemann uniformization theorem, every simply connected Riemann
surface is biholomorphic to P1, C, or to the upper half-plane H := {z ∈ C|Im(z) > 0} with a global
coordinate z. Therefore for a Riemann surface of genus at least two, the universal covering is the
upper half-plane.

Notice that the global coordinate on H induces, by the quotient map π : H → C, a particular
coordinate system on the Riemann surface C. Indeed, there is a faithful representation

ρ : π1(C) −→ SL(2,R)

such that C ∼= H
/
ρ
(
π1(C)

)
, where SL(2,R) acts on H through the projection

0 −→ Z/2Z −→ SL(2,R) −→ PSL(2,R) = Aut(H) −→ 0.

We can give a particular coordinate system on C using the universal covering map π : H −→ C.
Let

C =
⋃
α

Uα

be an open finite cover of C. For each coordinate neighborhood Uα, choose a contractible open

subset Ũα ⊂ H for which the map

π : Ũα
∼−→ Uα ⊂ C

is a biholomorphic map. Let us denote by zα the local coordinate defined on Uα that corresponds

to the global coordinate z restricted on Ũα. Then on each Uα ∩ Uβ, we have a Möbius coordinate
transformation

(5.1.1) zα =
aαβ · zβ + bαβ
cαβ · zβ + dαβ

,

[
aαβ bαβ
cαβ dαβ

]
∈ SL(2,R).

In what follows, we choose and fix a Möbius coordinate system on C.
Since

dzα =
1

(cαβ · zβ + dαβ)2
· dzβ,

the transition function for the canonical line bundle KC of C is given by the cocycle{
ξαβ =

dzβ
dzα

= (cαβ · zβ + dαβ)2

}
on Uα ∩ Uβ.

(1) We choose and fix a theta characteristic, or a spin structure for C, i.e. a line bundle K
1
2
C

such that (K
1
2
C )⊗2 ∼= KC .

(2) Let {ξαβ} denote the 1-cocycle corresponding to K
1
2
C with respect to the Möbius coordinate

system.

(3) The transition functions for K
1
2
C are given by

(5.1.2) ξαβ = ±(cαβ · zβ + dαβ).

The choice of the ± sign here is exactly an element of H1(C,Z/2Z) = (Z/2Z)2g, which classifies
the spin structure of C.

Definition 5.1 (Gunning 1967 [23]). A projective coordinate system on C is a coordinate system
on which transition function is given by a Möbius transformation.
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C =
⋃
α

Uα, zα ∈ Uα, zα =
aαβ · zβ + bαβ
cαβ · zβ + dαβ

,

[
aαβ bαβ
cαβ dαβ

]
∈ SL(2,C).

5.2. Hitchin section in rank two. Equipped with the choice of a spin structure for C and the

transition functions ξαβ for the line bundle K
1
2
C , we define the Hitchin section in rank two.

Recall the Hitchin map for the SL2(C)-Higgs bundles sends MDol 3 (E, φ)
H→ det(φ) ∈ B.

Definition 5.2. For each choice of q ∈ H0(C,K2
C) = B, the Hitchin section is the holomorphic

Lagrangian inside the Dolbeault moduli space MDol, given by

s(q) =

(
E0 := K

1
2
C ⊕K

− 1
2

C , φ(q) :=

[
0 q
1 0

])
.

Let fαβ =

(
ξαβ 0
0 ξ−1

αβ

)
be the transition functions of the vector bundle K

1
2
C ⊕ K

− 1
2

C . If the

quadratic differential q has a local form q(z)|Uα = qα(zα) · dz2
α, then the Higgs field on the Hitchin

section φ(q), which is a matrix valued 1-form, is given by

φα =

(
0 qα(zα) · dzα
dzα 0

)
.

Notice that the Higgs field φ(q) satisfies the compatibility condition (3.2.3):

fαβ · φβ · f−1
αβ =

(
ξαβ 0
0 ξ−1

αβ

)
·
(

0 qβ(zβ) · dzβ
dzβ 0

)
·
(
ξ−1
αβ 0

0 ξαβ

)
=

(
0 ξ2

αβ · qβ(zβ) · dzβ
ξ−2
αβ · dzβ 0

)
= φα.

It follows from noticing qβ(zβ)dz2
β = qα(zα)dz2

α and ξ2
αβ =

dzβ
dzα

, concluding that

ξ2
αβ · qβ(zβ) · dzβ = qβ(zβ) ·

dz2
β

dzα
= qα(zα) · dzα.

The stability of the Higgs bundle s(q) with

φ(q) =

[
0 q
1 0

]
: K

1
2
C ⊕K

− 1
2

C → K
3
2
C ⊕K

1
2
C

is seen as follows. First observe that if q 6= 0, then any vector sub-bundle of E0, either 0⊕K
1
2
C or

K
− 1

2
C ⊕ 0, is not φ invariant. If q = 0, then the vector sub-bundle 0⊕K−

1
2

C is φ-invariant since it is
mapped to zero by φ. However, its slope 1− g is negative, since we assume g ≥ 2.
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Remark 5.3. The Hitchin section (sometimes called the Hitchin component) is a section of the
Hitchin fibration 3.2.1 in the sense that it intersects with each fiber of H exactly once. For the case
of SL2(C)-Higgs bundles (rank 2), it is also a section with respect to the Hitchin map H, since
H ◦s = IdB. However, in general, the Hitchin sections we construct in Section 6 are not the section
with respect to the Hitchin map H, because H ◦ s 6= IdB.

For q ∈ H0(C,K2
C), the differential operator for a Higgs pair on a Hitchin section (5.2) in

Theorem 4.1, i.e., the quantum curve P (x, ~ · d/dx)|~=1 = d2

dx2
− q(x), is not globally defined.

This is because unlike the exterior differentiation d which is globally defined, the second order
differentiation d2/dx2 has no global meaning. However, in the projective coordinate system, the

differential equation
(
d2

dx2
− q(x)

)
ψ(x) = 0 makes sense globally on the curve C, provided that ψ

is a (multi-valued) section of K
− 1

2
C . More precisely, with respect to a coordinate change x = x(u),

we have

ψ
(
x(u)

) 1√
dx

= ψ(u)
1√
du

⇐⇒ e−
1
2

log x′(u)ψ
(
x(u)

)
= ψ(u),

where x′(u) = dx
du , and q(u)du2 = q(x)dx2. Then

0 = du2 · e
1
2

log x′(u)

[(
d

du

)2

− q(u)2

]
ψ(u)

= du2 · e
1
2

log x′(u)

[(
d

du

)2

− q(u)2

]
e−

1
2

log x′(u)ψ
(
x(u)

)
= du2 ·

(
e

1
2

log x′(u) d

du
e−

1
2

log x′(u)

)2

ψ
(
x(u)

)
− dx2q(x)ψ(x)

= du2 ·
(
d

du
− 1

2

x′′

x′

)2

ψ
(
x(u)

)
− dx2q(x)ψ(x)

= du2 ·

[(
d

du

)2

− x′′

x′
d

du
− 1

2

((
x′′

x′

)′
− 1

2

(
x′′

x′

)2
)]

ψ
(
x(u)

)
− dx2q(x)ψ(x)

= du2 ·
[(
ψx(x)x′

)
u
− x′′

x′
ψx(x)x′

]
− dx2q(x)ψ(x)

= ψxx(x)

(
dx

du

)2

du2 + du2 ·
(
ψx(x)x′′ − x′′ψx(x)

)
− dx2q(x)ψ(x)

= dx2 ·

[(
d

dx

)2

− q(x)

]
ψ(x).

Here, we have used the fact that the Schwarzian derivative

su(x) :=

(
x′′(u)

x′(u)

)′
− 1

2

(
x′′(u)

x′(u)

)2

is identically 0 if x = x(u) =
aαβ ·u+bαβ
cαβ ·u+dαβ

,

[
aαβ bαβ
cαβ dαβ

]
∈ SL(2,C). is a Möbius transformation of

Definition (5.1). We thus conclude that the quantum curve P (x, ~ · d/dx)|~=1 in Theorem 4.1 is

globally defined as a twisted D-module acting on the sheaf K
− 1

2
C . We leave to the interested reader

to check the details of this computation. The details of this consideration will be provided in
[14, 15].
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Let us now present an intuitive definition of opers.

Definition 5.4. An oper on an algebraic curve C is a globally defined differential operator of order

r acting on K
− r−1

2
C .

Remark 5.5. Importance of Gunning’s definition. In a projective coordinate system of C,
the quantum curve in Theorem 4.1 P (x, ~ · d/dx)|~=1 is an oper!

5.3. A family of Deligne’s ~-connections. For a Higgs bundle in Definition 5.2, we interpret

P (x, ~ · d/dx)ψ = 0 as ∇~
[
−~ψ′
ψ

]
= 0. Indeed, the quantum curve of the Higgs field(

E0 = K
1
2
C ⊕K

− 1
2

C , φ =

(
0 q(x) · dx
dx 0

))
is
(
~2 d2

dx2
− q(x)

)
· ψ(x, ~) = 0. This second order differential equation corresponds to the linear

system of ODE,
(
~ · ∇~) [−~ · ψ

ψ

]
= 0, where ∇~ is an ~-deformation family of opers

(5.3.1) ∇~ = d+
1

~
·
(

0 q(x) · dx
dx 0

)
.

Question 5.6. What is the corresponding vector bundle in which this family of connections ∇~ is
defined as in Remark 3.4, (3.2.4)?

To answer this question we interpret the complex number ~ of Theorem 4.1 as an extension class

of line bundles ~ ∈ C = Ext1(K
− 1

2
C ,K

1
2
C ) ∼= H1(C,KC) ∼= H0(C,O).

Theorem 5.7 ([23]). For every ~ ∈ C, there exists a unique extension

(5.3.2) 0→ K
1
2
C → V~ → K

− 1
2

C
→ 0

such that

(1) the rank 2 vector bundle V~ is given by transition functions {g~αβ}, g~αβ :=

(
ξαβ ~ · dξαβdzβ

0 ξ−1
αβ

)
,

(2) V0
∼= K

1
2
C ⊕K

− 1
2

C , and
(3) for ~ 6= 0, all the vector bundles V~ are isomorphic.

We denote by V := V~|~=1 the unique non-trivial extension of K
− 1

2
C by K

1
2
C . We will give a more

detail of higher-rank cases in [14, 15].

Proof. We recall that ξαβ of (5.1.2) are transition functions of K
1
2
C .

(1) It is an easy computation to check that g~αβ are transition functions of V~ satisfying the

1-cocycle condition. Denote by σαβ =
dξαβ
dzβ

; according to (5.1.2), it is a constant. First, we

have

(5.3.3) g~αβ · g~βγ =

(
ξαβ ~ · σαβ
0 ξ−1

αβ

)
·
(
ξβγ ~ · σβγ
0 ξ−1

βγ

)
=

(
ξαβ · ξβγ ~ · (ξαβσβγ + ξ−1

βγ σαβ)

0 (ξαβ · ξβγ)−1

)
.

From the 1-cocycle condition ξαβ · ξβγ = ξαγ and ξ2
αβ =

dzβ
dzα

, we claim

(5.3.4) σαγ = ξαβσβγ + ξ−1
βγ σαβ.
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To see this, apply the logarithmic differentiation to ξαγ = ξαβ · ξβγ . We obtain

dzγ · ξ−1
αγ ·

dξαγ
dzγ

= dzβ · ξ−1
αβ ·

dξαβ
dzβ

+ dzγ · ξ−1
βγ ·

dξβγ
dzγ

.

Hence

ξ−1
αγ ·

dξαγ
dzγ

=
dzβ
dzγ
· ξ−1
αβ · σαβ + ξ−1

βγ · σβγ ,

σαγ = ξαγ · ξ2
γβ · ξ−1

αβ · σαβ + ξαγ · ξ−1
βγ · σβγ

= (ξαβ · ξβγ) · ξ−2
βγ · ξ

−1
αβ · σαβ + (ξαβ · ξβγ) · ξ−1

βγ · σβγ
= ξ−1

βγ · σαβ + ξαβ · σβγ .

Therefore, g~αβ · g~βγ = g~αγ in (5.3.3).

(2) Since the matrix g~αβ|~=0 is diagonal, the vector bundle it defines splits

V0
∼= K

1
2
C ⊕K

− 1
2

C .

(3) For every ~ 6= 0, we show that vector bundle V~ is isomorphic to V . Indeed, the transition
functions g~αβ and g~αβ|~=1 are compatible with the change of trivialization uα : Uα →
GLr(C) (see Section 3.1)

uα · g~αβ · u−1
β =

(√
~−1

0

0
√
~

)
·
(
ξαβ ~ · σαβ
0 ξ−1

αβ

)
·

(√
~ 0

0
√
~−1

)

=

(
ξαβ σαβ
0 ξ−1

αβ

)
= g~αβ|~=1.(5.3.5)

�

Lemma 5.8. ∇~ in (5.3.1) is a connection on V~.

Proof. We first recall equation (3.2.4) for a connection ∇~ = {d + A~
α} (5.3.1) on a vector bundle

V~ given by transition functions g~αβ, where

A~
α =

1

~

(
0 qα(zα) · dzα
dzα 0

)
.

A~
α = g~αβ ·A~

β · (g~αβ)−1 + g~αβ · d(g~αβ)−1(5.3.6)

g~αβ ·A~
β · (g~αβ)−1 =

1

~

(
ξαβ ~ · σαβ
0 ξ−1

αβ

)
·
(

0 qβ(zβ) · dzβ
dzβ 0

)
·
(
ξ−1
αβ −~ · σαβ
0 ξαβ

)
.

=

(
σαβ · ξ−1

αβ −~ · σ2
αβ + 1

~ξ
2
αβ · qβ(zβ)

1
~ · ξ

−2
αβ −ξ−1

αβ · σαβ

)
· dzβ.

g~αβ · d(g~αβ)−1 = −
dg~αβ
dzβ

· (g~αβ)−1 · dzβ

= −

σαβ ~ · dσαβdzβ

0
dξ−1
αβ

dzβ

 · (ξ−1
αβ −~ · σαβ
0 ξαβ

)
· dzβ

= −

(
σαβ · ξ−1

αβ −~ · σ2
αβ + ~ · ξαβ ·

d2ξαβ
dz2β

0 −ξ−1
αβ · σαβ

)
· dzβ.
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Relation (5.1.2) implies
d2ξαβ
dz2b

= 0. We conclude that

g~αβ ·A~
β · (g~αβ)−1 + g~αβ · d(g~αβ)−1 =

1

~
·

(
0 qβ(zβ) · dz

2
β

dza
dzα 0

)
=

1

~
·
(

0 qα(zα) · dza
dzα 0

)
= A~

α.

�

By fixing a complex structure of the curve C Gunning proved the following isomorphism as affine
spaces in [23]

(5.3.7)

H0(C,K2
C) ∼= moduli space of SL2(C)-opers on C
∼= moduli space of projective coordinate systems on C

that subordinate the complex structure of C.

Since the space of quadratic differentials H0(C,K2
C) is a vector space, it seems to imply that

the holomorphic Lagrangian of opers also inherits an origin, corresponding to q = 0. Indeed,

∇unif = d +

(
0 0
dx 0

)
that we call the uniformizing oper, will play an important role in the next

two sections. However, we note that such a choice does not come from algebraic geometry, as we
see below.

The computations performed in Definition 5.2 and Lemma 5.8 show that the family ~·∇~, as well
as the quantum curve of Theorem 4.1, is a ~-connection of Deligne. This is a family of deforma-
tions that interpolates a Higgs field ~·∇~|~=0 and a genuine connection ~·∇~|~=1. We thus conclude
that the Dumitrescu-Mulase quantum curve of Theorem 4.1, ~∇~, is an ~-deformation family of
connections constructing a holomorphic passage form a Higgs field on the Hitchin section ~ ·∇~|~=0

to an oper ~ · ∇~|~=1, once we choose a Möbius coordinate system:(
K

1
2
C ⊕K

− 1
2

C ,

[
0 q
1 0

])
DM→

(
V, d+

[
0 q(x)dx
dx 0

])
.

6. Hitchin moduli spaces for the Lie group G = SLr(C)

To introduce Gaiotto’s correspondence, we need to consider Hitchin moduli spaces for simple
complex Lie group G. In this paper, we restrict ourselves to the case of G = SLr(C). An SLr(C)-
Higgs bundle is a pair (E, φ) consisting of a holomorphic vector bundle E over a smooth projective
curve C with a fixed determinant det(E) = ∧2E = OC , and a traceless Higgs field φ. We use the
same notations in Definition (3.1) in Section 3.1.

• E, V denote holomorphic vector bundles of rank r and degree 0 with trivial determinant.
• φ : E → E ⊗KC is a traceless holomorphic Higgs field.
• ∇ : V → V ⊗KC is an irreducible holomorphic connection.

Let Etop := E denote the underlying topological structure of the rank r vector bundle E, obtained
by forgetting its complex structure. Topological complex vector bundles over a compact topological
surface are classified by their degrees and ranks, while the complete topological classification of
complex vector bundles over a higher dimensional smooth topological manifold is given by their
Chern classes. Since Etop has rank r and degree zero, it is topologically isomorphic to the direct
sum O⊕rC of r copies of the trivial line bundle OC over C.

As mentioned earlier, a classical result of Narasimhan-Seshadri [35] shows that the moduli space
UC(r, d) of stable holomorphic vector bundles of rank r and degree d defined on a smooth projective
algebraic curve C is diffeomorphic to the space of projectively flat irreducible unitary connections
on C. A connection is said to be projectively flat if its curvature takes values in the center of the Lie
algebra of the structure group of the vector bundle. For the case of degree 0, there is a one-to-one
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correspondence between stable holomorphic vector bundles and flat irreducible unitary connections.
Through the Riemann-Hilbert correspondence, these flat irreducible connections correspond to
representations of the fundamental group π1(C) into the unitary group modulo conjugation [3, 34].
The equivalence classes of representations form a character variety

Homirr (π1(C), Un)
/
Un.

The work of Hitchin [26], Donaldson [8] and Simpson [38] generalizes the above result to the
moduli theory of Higgs bundles, holomorphic connections, and complex character varieties. Ac-
cording to this generalization, a stable holomorphic Higgs bundle (E, φ) of degree 0 corresponds to
(D,φ, h) consisting of the following data that satisfy Hitchin’s equations:

• h is a hermitian metric on Etop.
• D is a unitary connection on Etop with respect to the hermitian metric h. The connection
D decomposes into the holomorphic and antiholomorphic part

D = D1,0 +D0,1.

In terms of a local coordinate z of C, D can locally be given by D = d+A with the exterior
differential d = ∂+ ∂̄, where ∂ = ∂

∂z ·dz and ∂̄ = ∂
∂z̄ ·dz̄, and an r×r skew-hermitian matrix

A of 1-forms on C.
• φ : Etop −→ Etop ⊗ Ω1

C is a traceless r × r matrix of differentiable 1-forms on C.

We note that the Cauchy-Riemann part D0,1 of the connection D induces a holomorphic structure
in Etop, which we denote simply by E. The unitarity condition means that the connection D is
determined by D0,1.

The great discovery of Donaldson [8] is that the stability condition for a Higgs bundle (E, φ)
is the system of non-linear PDEs that Hitchin discovered through the reduction of 4D Yang-Mills
self-duality equations. Denote by FD the curvature of the connection D,

FD =
1

2
· [D,D] = [D1,0, D0,1],

and by φ†h the adjoint of φ with respect to the hermitian metric h. The following system of
non-linear PDEs is known as Hitchin’s equations:

(6.0.8)

{
FD + [φ, φ†h ] = 0

D0,1φ = 0.

For our purpose, it is important that Hitchin’s equations (6.0.8) are equivalent to the flatness of
the family of connections

(6.0.9) D(ζ) :=
1

ζ
· φ+D + ζ · φ†h

for all ζ ∈ C∗. We can see this equivalence as follows. A straightforward calculation shows

[D(ζ), D(ζ)] =
1

ζ2
· [φ, φ] + ζ2 · [φ†h , φ†h ] + 2 · (FD + [φ, φ†h ])

+
1

ζ
· ([φ,D] + [D,φ]) + ζ ·

(
[φ†h , D] + [D,φ†h ]

)
.

Clearly (6.0.8) implies the flatness of D(ζ), because the second equation makes φ holomorphic with
respect to the complex structure of C and the holomorphic structure of E. Conversely, from the
flatness of D(ζ), the first equation of (6.0.8) follows from the constant terms with respect to ζ.
From the 1/ζ2 terms, we see that φ contains only dz or dz̄ term, and from the 1/ζ and ζ terms we
see that either φ or φ†h is holomorphic. We rename the holomorphic one φ to obtain (6.0.8).
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We thus have the following correspondences

A stable Higgs bundle (E, φ)←→ (D,φ, h) satisfying (6.0.8) ←→ [D(ζ), D(ζ)] = 0 of (6.0.9).

To deal with three different appearances of complex moduli spaces in the Hitchin theory, we
use the terminology gauge theoretical moduli space, denoted by MGauge, to describe the differen-
tial geometric moduli space of solutions (D,φ, h) satisfying Hitchin’s equations (6.0.8). It is a
hyperKähler manifold with P1-worth of complex structures. Customary, we assign the complex
structure of MDol, the moduli space of stable Higgs bundles, to the origin of P1, and the algebraic
structure of MdeR, the moduli space of irreducible holomorphic connections, to 1 ∈ P1. They are
both diffeomorphic to MGauge.

A particular diffeomorphism, known as the nonabelian Hodge correspondence, betweenMDol and
MdeR is given as follows [8, 26, 38]. Firstly, we assign the flat connection D(ζ) to (E, φ) ∈ MDol.
Secondly, we define a new holomorphic vector bundle V = (Etop, D(ζ = 1)0,1) by using the Cauchy-
Riemann part of the flat connection D(ζ) at ζ = 1. With respect to this complex structure, the
(1, 0)-part of the connection ∇ := D(ζ = 1)1,0 is automatically a holomorphic connection in V ,
since D(ζ) is flat. Thus we obtain (V,∇) ∈MdeR.

MDol 3 (E, φ)
NAH−→

(
V,∇ := D(1)1,0

)
∈MdeR.

This is a generalization of the classical results of Narasimhan-Seshadri to Higgs bundles. A
character variety also comes in to the picture, as the Betti moduli space

MBetti := Homirr (π1(C), SLr(C)) � SLr(C).

The classical unitary group is now replaced by a complex Lie group G = SLr(C). The complex
structure of MBetti comes from that of the group SLr(C). The Riemann-Hilbert correspondence
gives a highly transcendental biholomorphic map between MdeR and MBetti. We thus have

MDol = moduli space of stable holomorphic Higgs bundles (E, φ) on C of rank r

∼ [Diffeomorphic NAH, Donaldson-Hitchin-Simpson]
MdeR = moduli space of rank r irreducible connections (V,∇) on C

∼ = [Biholomorphic Riemann-Hilbert]
MBetti = Homirr (π1(C), SLr(C)) � SLr(C).

6.1. Hitchin section for SLr(C)-Higgs bundles (principal sl2(C)). We fix a spin structure K
1
2
C

on C given by transition functions {ξαβ}. To define a Hitchin section of G-Higgs bundles for a simple
complex Lie group G, we need the notion of Konstant’s principal three-dimensional subgroup (TDS)
of [29]. For the case of G = SLr(C), it simply comes from the unique r-dimensional irreducible
representation of SL2(C). The Lie algebra of principal TDS is the linear span 〈X+, X−, H〉, where

• X+ :=


0
√
p1 0 · · · 0

0 0
√
p2 · · · 0

...
...

...
. . .

...
0 0 0 · · · √pr−1

0 0 0 · · · 0

, pi := i(r − i),

• X− := Xt
+,
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• H := [X+, X−] =


r − 1 0 · · · 0 0

0 r − 3 · · · 0 0
...

...
. . .

...
...

0 0 · · · −(r − 3) 0
0 0 · · · 0 −(r − 1)

 .

Define the split vector bundle E0 := K
r−1
2

C ⊕K
r−1
2
−1

C ⊕. . .⊕K−
r−1
2

C , whose transition function is given

by {ξHαβ = exp(H ·log ξαβ)}. We note that every qi ∈ H0
(
C,Ki+1

C

)
satisfies that qi|Uα = qi|Uβ ·ξ

2(i+1)
αβ .

Now we can generalize Definition 5.2 of Section 5.2 as follows.

Definition 6.1. The Hitchin section is a holomorphic Lagrangian inside MDol consisting of
stable Higgs pairs (E0, φ(q)) for every q = (q1, . . . , qr−1) ∈ B =

⊕r−1
i=1 H

0
(
C,Ki+1

C

)
, where

φ(q) := X− +
r−1∑
i=1

qi ·Xi
+.

6.2. On a conjecture of Gaiotto. In 2014, Gaiotto [18] conjectured the following.

Conjecture 6.2. Let (E0, φ) be a stable Higgs pair on a Hitchin section in MDol, and D(ζ),
ζ ∈ C∗, the corresponding one-parameter family of flat connections. Define a two-parameter
family of connections by

(6.2.1) D(ζ,R) := ζ−1 ·R · φ+D + ζ ·R · φ†,

where R ∈ R+ is a positive real number. Then the scaling limit

lim
R→0, ζ→0
ζ/R=~

D(ζ,R)

exists, and defines an SLr(C)-oper for every ~ ∈ C∗.

The data (D,φ, h) corresponding to any point (E0, φ(q)) on the Hitchin section satisfies Hitchin’s
equations (6.0.8). Scaling the Higgs field φ(q) by any real parameter R ∈ R+ does not affect the
stability condition. Therefore, the scaled data (D,Rφ, h) corresponding to the pair (E0, Rφ(q)) ∈
MDol also satisfies Hitchin’s equations. This time, the equation is R-twisted:

(6.2.2)

{
FD +R2 · [φ, φ†h ] = 0

D0,1φ = 0.

By the same argument as before, the R-twisted Hitchin equations are equivalent to the flatness of
the two-parameter family of connections D(ζ,R).
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A surprising fact of this conjecture is that the scaling limit of the differential geometric ob-
ject D(ζ,R) is automatically an ~-family of holomorphic connections defined on an algebraic ~-
deformation family of filtered vector bungles, generalizing the extension

0→ K
1
2
C → V~ → K

− 1
2

C → 0.

Näıvely, it looks that the scaling limit of (6.2.1) is simply D+ 1
~φ. There is a problem here, because

the hermitian metric h that solves (6.2.2) explodes as R → 0. Since the h-unitary connection D
also depends on h, the limit of D does not make sense as R tends to 0.

Theorem 6.3 (Dumitrescu, Fredrickson, Kydonakis, Mazzeo, Mulase, Neitzke, [9]). Conjecture 6.2
holds for an arbitrary simple and simply connected complex Lie group G.

6.3. Sketch of the proof in rank two. We present here the main steps to prove Theorem 6.3
for the case of G = SL2(C). We use the basis〈

X+ =

[
0 1
0 0

]
, X− =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]〉
for sl2(C) to simplify our calculations. Their commutation relations are

[X+, X−] = H, [H,X±] = ±2X±.

Step 1. We first notice that a hermitian metric on the canonical bundle KC naturally comes from
a hermitian metric on the curve C itself. Since we start from a Higgs pair on a Hitchin section with

vector bundle E0 = K
1
2
C ⊕K

− 1
2

C , a fiber metric is determined by a hermitian metric on C. Recall
that

A Higgs bundle (E0, φ) on the Hitchin section −→ (D,φ, h) satisfying (6.0.8).

A choice of a hermitian metric on C determines the fiber metric h, and hence the unitary connection
D. Thus we wish to see how it translates into Hitchin’s equations.

Step 2. We start from a complex structure on C with a holomorphic local parameter z, together
with a hermitian metric

g = λ2 · dz · dz̄
on C, where λ is a positive real function depending on R. The hermitian metric on C is the same
as the fiber metric of the tangent bundle of C, which is K−1

C . Hence λ naturally gives a fiber metric

of K
− 1

2
C . Therefore, the hermitian metric on the split vector bundle E0 = K

1
2
C⊕K

− 1
2

C is given by the

matrix h =

[
λ−1 0

0 λ.

]
. Then D becomes the Chern connection D = D1,0 + D0,1, where D0,1 = ∂̄

and D1,0 = ∂ + h−1 · ∂h. In terms of λ, we have

D = d+ h−1 · ∂h = d− ∂ log λ ·
[
1 0
0 −1

]
= d− ∂ log λ ·H.

Step 3. Let us introduce a Higgs field

φ = φ(q) =

[
0 q
1 0

]
· dz = (X− + q ·X+) · dz

so that (E0, φ(q)) is on the Hitchin section, where q ∈ H0
(
C,K2

C

)
. The hermitian conjugate of the

Higgs field is calculated by

φ†h = h−1·φt·h =

[
λ 0
0 λ−1

]
·
[
0 1
q 0

]
· dz·

[
λ−1 0

0 λ

]
=

[
0 λ2

λ−2 · q 0

]
·dz̄ =

(
λ−2 · q̄ ·X− + λ2 ·X+

)
·dz̄.
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Step 4. Since we have identified all the ingredients, we can now write the two-parameter family
of connections in this local coordinate as

D(ζ,R) =
R

ζ
·
[
0 q
1 0

]
· dz + d− ∂ log λ ·

[
1 0
0 −1

]
· dz +R · ζ ·

[
0 λ2

q · λ−2 0

]
· dz̄

= d+
R

ζ
· dz · (X− + q ·X+)− ∂ log λ · dz ·H +R · ζ · dz̄ ·

(
q̄ · λ−2 ·X− + λ2 ·X+

)
.

Step 5. A simple calculation shows that the coefficient of H in the flatness condition

[D(ζ,R), D(ζ,R)] = 0

of D(ζ,R) yields

0 = [d,−∂ log λ · dz ·H] +R2 · dz ∧ dz̄ ·
(
λ2 · [X−, X+] + q · q̄ · λ−2 · [X+, X−]

)
= −d∂ log λ · dz ·H +R2 · dz ∧ dz̄ ·

(
−λ2 ·H + q · q̄ · λ−2 ·H

)
=
(
∂̄∂ log λ+R2 · (λ−2 · q · q − λ2)

)
· dz ∧ dz̄.

Therefore, we obtain

(6.3.1) ∂̄∂ log λ+R2 · (λ−2 · q · q − λ2) = 0.

We thus conclude that the flatness condition for the two-parameter family of connections D(ζ,R)
gives the harmonicity condition (6.3.1) for the hermitian metric λ.

Step 6. For q = 0, i.e., φ = X−, the harmonicity equation (6.3.1) becomes

(6.3.2) ∂̄∂ log λ−R2 · λ2 = 0,

which can be solved explicitly. We obtain

(6.3.3) λ0 =
1

R
· i

z − z̄
.

Let us denote by

(6.3.4) λ\ =
i

z − z̄
=

1

2 · y
,

where z = x+ iy. The corresponding hermitian metric is then

g\ =
dz · dz̄
4 · y2

,

whose Gaussian curvature is

(6.3.5) K := − 4

λ2
\

· ∂∂̄ log λ\ = −4.

Indeed, g\ is the globally defined constant curvature metric on the upper half plane H, which is
invariant under the action of PSL2(R) = Aut(H). Since we are dealing with a Riemann surface C
of genus g ≥ 2, its universal covering is H, and we have a non-canonical isomorphism C ∼= H/π1(C),
where π1(C) acts on H through a representation ρ : π1(C) −→ SL2(R). By inducing a metric by
the push-forward of the covering map H −→ C, we conclude that the harmonicity equation (6.3.2)
can be solved globally on C with the hyperbolic metric on C of constant curvature −4R2.

Since ζ
R = ~, we obtain

(6.3.6)
D(ζ,R) = d+

1

~
·
[
0 0
1 0

]
· dz − ∂ log λ\ ·

[
1 0
0 −1

]
dz + ~ ·

[
0 λ2

\

0 0

]
dz̄

= d+
1

~
· dz ·X1 − ∂ log λ\ · dz ·H + ~ · λ2

\ · dz̄ ·X+,
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which does not depend on R.

Step 7. The case when q 6= 0 in general. We remark that any hermitian metric compatible with
the complex structure of C is conformal to the constant curvature metric g\. Therefore, we can
write

λ = λ0 · ef(R) =
λ\
R
· ef(R)

with a conformal factor ef(R) depending on a real valued function f(R) on C. We plug this
expression into (6.3.1) and apply the implicit function theorem to yield that f is real analytic, and
more significantly, that f(R) = f4 ·R4+ higher order terms. This implies

λ−2 =
R2

λ2
\

· e−2f(R) =
R2

λ2
\

+O(R6), λ =
λ\
R

+O(R3), ∂ log λ = ∂ log λ\ +O(R4).

Therefore, we obtain the scaling limit as

(6.3.7)

D(ζ,R) = d+
1

~
·
[
0 q
1 0

]
· dz − ∂ log λ ·

[
1 0
0 −1

]
· dz +R2 · ~

[
0 λ2

q · λ−2 0

]
· dz̄

= d+
1

~
·
[
0 q
1 0

]
· dz − ∂ log λ\ ·

[
1 0
0 −1

]
· dz +O(R4) ·

[
1 0
0 −1

]
· dz

+ ~ ·

[
0 λ2

\ +O(R4)

q · R4

λ2\
+O(R8) 0

]
· dz̄

R→ 0, ζ → 0

ζ/R = ~
→ d+

1

~
·
[
0 q
1 0

]
· dz − ∂ log λ\ ·

[
1 0
0 −1

]
· dz + ~ ·

[
0 λ2

\

0 0

]
· dz̄

= d+
1

~
· dz · (X− + q ·X+)− ∂ log λ\ · dz ·H + ~ · λ2

\ · dz̄ ·X+.

We can see that the only dependence on the quadratic differential q is in the form of φ(q).

7. The limit oper of Gaiotto’s correspondence and the quantum curve

In this section we will prove that the scaling limit lim
R,ζ→0, ζ

R
=~D(ζ,R) is an oper.

A surprising fact is that the limit oper of Theorem 6.3 [9] is gauge equivalent to ∇~ = d+ 1
~ ·φ in

the Möbius coordinate system obtained by the uniformization of the base curve C. In other words,
the limit oper of Gaiotto correspondence in rank two is the quantum curve of Theorem 4.1 ([10]).
We use Theorem 5.7 and Lemma 5.8 of Section 5.3 to imply that the scaling limit of Gaiotto’s
correspondence is actually an oper. For the sake of completeness, we include detailed computations
here.

Proposition 7.1 (Gauge transform of the scaling Limit). The limit expression of (6.3.7),

D(~) := d+
1

~
· dz · (X− + q ·X+)− ∂ log λ\ · dz ·H + ~ · λ2

\ · dz̄ ·X+,

is gauge equivalent to an oper

(7.0.8) ∇~ := d+
1

~
·
[
0 q
1 0

]
· dz = d+

1

~
· φ(q).

Here, λ\ = i
z−z̄ is the local expression of the hermitian metric of constant curvature −4 on C. If

we introduce a Möbius coordinate system on C induced by the uniformization covering H −→ C,
then (7.0.8) determines a globally defined oper on C.
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Proof. The claim is that ∇~ = g ·D(~) · g−1 with the gauge transformation

g =

[
1 ~ · ∂ log λ\
0 1

]
= e~·∂ log λ\·X+ .

For brevity, let us denote a = ∂ log λ\ and b = λ2
\ . Then

D(~) = d+
1

~
· dz · (X− + q ·X+)− a · dz ·H + ~ · b · dz̄ ·X+, g = e~·a·X+ .

Recall that for any elements A and B of a Lie algebra and a central parameter ε, we have the
adjoint formula

eεA ·B · e−εA =
∞∑
n=0

1

n!
εn · adnA(B),

where

adnA(B) :=

n︷ ︸︸ ︷
[A, [A, [· · · , [A,B] · · · ]]].

From the commutation relations of the basis for sl2(C) , we see that

g ·X− · g−1 = X− + ~ · a · [X+, X−] +
1

2
(~ · a)2 · [X+, [X+, X−]] = X− + ~ · a ·H − (~ · a)2 ·X+.

Therefore,

g · 1

~
· dz · (X− + q ·X+) · g−1 =

(
1

~
· (X− + q ·X+) + a ·H − ~ · a2 ·X+

)
· dz.

Similarly,

g ·H · g−1 = H + ~ · a · [X+, H] = H − 2~ · a ·X+,

which yields

−g · a · dz ·H · g−1 = −a · dz ·H + 2~ · a2 · dz ·X+.

It is obvious that

g · ~ · b · dz̄ ·X+ · g−1 = ~ · b · dz̄ ·X+.

Finally, we calculate

g · d · g−1 = d− ~ · da ·X+

= d− ~ · (∂a · dz + ∂̄ · a · dz̄) ·X+

= d− ~ · dz · ∂2 log λ\ ·X+ − ~ · dz̄ · ∂̄∂ log λ\ ·X+

= d+ ~ · dz ·
(∂λ\)

2 − λ\ · ∂2λ\
λ2
\

·X+ − ~ · dz̄ · λ2
\ ·X+,

where we used the constant curvature property (6.3.5) in the last step.
Adding all together, we obtain the gauge transformation formula

g ·D(~) · g−1 = d+

(
1

~
· (X− + q ·X+) + ∂ log λ\ ·H − ~ · (∂ log λ\)

2 ·X+

)
· dz+

+ ~ · dz ·
(∂λ\)

2 − λ\ · ∂2λ\
λ2
\

·X+ + (~ · b · dz̄ − ~ · dz̄ · λ2
\ ) ·X+−

− ∂ log λ\ · dz ·H + 2~ · (∂ log λ\)
2 · dz ·X+

= d+
1

~
· (X− + q ·X+) · dz + ~ · dz ·

2 · (∂λ\)2 − λ\ · ∂2λ\
λ2
\

·X+
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= d+
1

~
· φ(q).

Here, we use the fact that 2 · (∂λ\)2 − λ\ · ∂2λ\ = 0, which follows from the expression (6.3.4). �

The computation we have shown above is only for SL2(C). Yet it is valid for proving vastly
general Theorem 6.3. The key idea is to use Kostant’s principal TDS [29], replacing the basis
〈H,X±〉 by the one for TDS. Then almost exactly the same formulas hold for the general situation.
Here, we only indicate the oper we obtain through Gaiotto’s scaling limit for the case of SLr(C)-
Higgs bundles. We will give a geometric definition of oper that generalizes Gunning’s Definition
encaptured by Theorem 5.7 from rank two to arbitrary rank r.

Definition 7.2 (Beilinson-Drinfeld, 1993). Let V be a holomorphic vector bundle of rank r and
degree 0. An SLr(C)-oper is a pair (V,∇) ∈MdeR satisfying the following conditions:

(1) There is a global filtration 0 = Fr ↪→ Fr−1 ↪→ . . . ↪→ F0 = V in V .
(2) Griffiths transversality. The connection ∇ induces a map ∇|Fi+1 : Fi+1 → Fi⊗KC for every

i = 0, . . . , r − 1.
(3) ∇|Fi+1 induces an OC-linear isomorphism Fi+1/Fi+2

∼= Fi/Fi+1 ⊗KC for every i.

Let (E0, φ(q)) be a point on the Hitchin section of Section 6.1. Then Gaiotto’s scaling limit
produces an ~-family of opers (V~,∇~) defined as follows. First, we choose once and for all the
Möbius coordinate system associated with the uniformization mentioned above.

• V~ is given by the transition function {f~αβ}, where

f~αβ = exp(H · log ξαβ) · exp

(
~ ·

d log ξαβ
dzβ

·X+

)
.

• The connection is defined by

∇~ := d+
1

~
· φ(q).

Note that this definition is globally valid with respect to a Möbius coordinate system.

• V0 = K
r−1
2

C ⊕ . . .⊕K−
r−1
2

C = E0, since f~=0
αβ = exp(H · log ξαβ) = ξHαβ.

• There is a unique filtration in the vector bundle V~ with Fr−1 = K
r−1
2

C that satisfies the
conditions of Definition 7.2.
• The vector bundles V~ are isomorphic for all ~ 6= 0.

We refer to [14, 15] for more detail.

8. Conclusion

We emphasize again that the nonabelian Hodge correspondence is a diffeomorphism between
MDol and MdeR. ([8, 26, 38]). Conjecture 6.2 of Gaiotto realizes a holomorphic point by
point correspondence between two holomorphic Lagrangians, the Hitchin section in MDol and
the moduli space of opers in MdeR. Since the quantum curve should depend holomorphically on
the spectral curve, we consider the Gaiotto correspondence as the desired construction of quantum
curves.

• Donaldson, Hitchin, Simpson Nonabelian-Hodge correspondence

MDol
diffeomorphism−→ MdeR
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• Gaiotto’s conjecture gives a holomorphic correspondence between Lagrangians

Hitchin Section
holomorphic−→ moduli space of opers

Quantization is never unique. Yet the Catalan example we presented earlier clearly shows why
we are interested in the unique process of quantization. A quantum curve quantizes the B-model
geometry, which provides a generating function of genus g A-models for all g. Thus we wish a
unique quantization result.

Starting from a Hitchin spectral curve, we identify the Higgs bundle on the Hitchin section.
This is unique, once the spin structure of the curve C is chosen. Then the correspondence given
by Gaiotto’s scaling limit constructs, again, a unique oper in the moduli space of holomorphic
connections on C. Thus the process from the spectral curve to the quantum curve (oper) is unique,
and depends holomorphically on the moduli of spectral curves, when the complex structure of C is
fixed.

We present below a local picture of the two Lagrangians inside the Dolbeault moduli space
together with their images under the nonabelian-Hodge and Gaiotto’s correspondences. In the
figure, V1 = V~|~=1. The picture does not show the global relations between various Lagrangians
in the moduli spaces. For example, the SLr(R)-Hitchin component in MdeR and the oper moduli
space intersects infinitely many times. Only locally they intersect at a point, here at (V1, d+X−).

Non-Abelian Hodge

Gaiotto Correspondence = Canonical Biholomorphic Map

Hitchin Section Oper Moduli

Stable
Bundles

SL  (R)

SU

(E  , X  )0 -
 

(V  , d + X  )1 -

Moduli of Higgs Bundles Moduli of Holomorphic
         Connections

quantization

semi-classical limit

Diffeomorphism Hitchin Component

Narasimhan
Seshadri

(C, K    ) ChosenC
1/2

r

r
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